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Taylor-Gortler vortices in fully developed or 
boundary-layer flows: linear theory 

By P. HALL 
Department of Mathematics, Imperial College, London 

(Received 5 May 1981) 

The stability characteristics of some fluid flows at  high Taylor or Gortler numbers 
are determined using perturbation methods. I n  particular, the stability characteristics 
of some fully developed flows between concentric cylinders driven either by a pressure 
gradient or the motion of the inner cylinder are investigated. The asymptotic 
structure of short-wavelength disturbances to these flows is obtained and used as a 
basis for a formal perturbation solution to the corresponding stability problem 
appropriate to a developing boundary layer. The non-parallel effect of the basic flow 
on the condition for neutral stability is discussed. The results obtained suggest that 
the disturbances are concentrated in internal viscous or critical layers well away from 
the wall and the free stream. The stability of a boundary layer on a concave wall 
to Gortler vortices that propagate downstream is also considered. These modes are 
found to be more stable than the usual time-independent modes and they propagate 
downstream with the speed of the basic flow in the critical layer. Some comparison 
with previous experimental and theoretical work is given. 

1. Introduction 
The primary aim of this paper is to show how boundary-layer growth influences 

the growth of Gortler vortices in developing flows on concave surfaces. The existence 
of such vortices was predicted theoretically by Gortler (1940) while Gregory & Walker 
(1950) demonstrated experimentally the occurrence of this form of instability on the 
flap of a Griffith suction aerofoil. The instability arises because of centrifugal effects 
and has much in common with the Taylor-vortex instability of fully developed 
circumferential flows between concentric cylinders. It is clear, however, that  some 
difference between the problems must exist because of the developing nature of the 
basic flow in which Gortler vortices occur. Indeed, the non-parallel nature of the basic 
flow in the Gortler problem causes the greatest difficulty in formulating a 
mathematically tractable and justifiable linear-stability eigenvalue problem. We 
shall see in this paper that for vortices having wavelength of the same (or smaller) 
order of magnitude as the boundary-layer thickness there is no justification for 
making the parallel-flow approximation. 

Gortler (1940) investigated the stability of boundary-layer flows on concave walls 
by making the parallel-flow approximation and neglecting higher-order curvature 
effects. Thus Gortler derived a sixth-order ordinary differential system essentially 
identical to the system appropriate to the Taylor-vortex stability equations discussed 
by Taylor (1923). These equations were solved approximately by Green-function 
methods, and Gortler found that boundary layers on curved walls are unstable a t  
sufficiently high flow speeds. Moreover, Gortler found a critical value for the 
non-dimensional parameter G (essentially a Taylor number) subsequently referred to 
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as the Gortler number and above which growing disturbances to the basic state exist. 
This critical value of G was found by Gortler to  occur a t  a finite value of the 
wavenumber of the vortices. 

Hammerlin (1955) solved Gortler's equations more rigorously and found the 
surprising result that  the critical Gortler number corresponded to  vortices of infinite 
wavelength. I n  an attempt to  rectify this situation, Hammerlin (1956) derived and 
solved a modified version of Gortler's equations that included some higher-order 
curvature terms. Hammerlin found that this alternative set of equations had the 
required property that the most dangerous disturbance occurred a t  a wavenumber 
k + 0. An alternative set of 'improved' equations was derived by Smith (1955), who 
included not only the higher-order curvature terms retained by Hammerlin (1956) 
but also certain terms arising from the non-parallel nature of the basic flow. The 
results of Smith's calculations were essentially identical with those of Hammerlin 
(1956). Since that time, numerous authors have investigated various modified 
versions of the stability equations of Hammerlin and Smith. A review of the results 
of some of these investigations can be found in Herbert (1976) and Floryan & Saric 
(1979). I n  the latter paper, in addition to  a comprehensive review of previous work, 
the authors determine the effect of suction on Gortler-vortex instability. It appears 
that  a t  small values of the non-dimensional wavenumbers of the vortices there is no 
limit to the disagreement between the different calculations. 

We shall show in this paper that  this result is due to the effect of boundary-layer 
growth. Moreover, we shall show that the parallel-flow approximation universally 
applied in previous investigations of Gortler vortices has no mathematical justification 
except a t  high values of k. We shall therefore develop a formal asymptotic expansion 
of the appropriate linear-stability partial differential equations based on the smallness 
of the wavelength of the imposed disturbance. The expansion method that we use 
has many similarities with the procedure used by Smith (1979,1980), who investigated 
the effect of boundary-layer growth on Tollmien-Schlichting waves in developing 
flows. 

The surprising outcome of our calculation is that  the disturbances at  high 
wavenumbers are concentrated in internal viscous layers away from the wall and the 
free stream. The vertical structure of the disturbances in these layers can be expressed 
simply in terms of parabolic cylinder functions, and a simple analytic expression for 
the neutral curve a t  high wavenumbers is obtained. Moreover, non-parallel effects 
can be taken care of in a rational way using our expansion procedure. 

I n  order to see how the asymptotic structure of the high-wavenumber disturbance 
equations depends on the precise nature of the basic flow we shall first of all return 
to the classical Taylor-vortex problem and the related problem discussed by Dean 
(1928). The latter author investigated the stability of pressure gradient driven flows 
between concentric cylinders and found that such flows could also be unstable to 
Taylor vortices. Thus in Q 2 we shall investigate asymptotic approximations to these 
problems for the case when the vortices have wavelengths small compared with the 
separation of the cylinders. We shall see that the nature of the disturbances in this 
limit depends crucially on the basic circumferential flow v(r). It is found that the 
disturbances are concentrated in thin viscous layers centred on the position where 
1 vv"l has its maximum value. Thus in the Taylor problem the viscous layers are a t  
the inner cylinder, while in the Dean problem they are in the interior of the fluid. 
I n  fact the structure of the disturbance velocity field in the Dean problem suggests 
the form of the corresponding velocity field in the boundary layer case. 

I n  $3 we shall use the asymptotic procedure formulated for the Dean problem in 
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9 2 to investigate high-wavenumber Gortler vortices in growing boundary layers. In  
94 we discuss the results obtained in 93 and their relevance to  the available 
experimental results. 

2. Fully developed flows 
I n  this section we investigate the short-wavelength asymptotic structure of the 

centrifugal instabilities of two fundamental flows between concentric cylinders of 
radii R and R + d .  The first problem has a basic circumferential flow driven by the 
steady motion of the inner cylinder about its axis, while the outer cylinder is held 
fixed. In  the second problem, first considered by Dean (19281, the basic flow is driven 
by a constant pressure gradient in the circumferential direction. We shall refer to the 
former and latter problems as the Taylor and Dean problems respectively. 

1 but, apart from 
simplifying the analysis, there is no great difference between this limit and the 
finite-gap case. The basic flows set up in the two problems are susceptible to Taylor 
vortex instabilities for which the perturbation velocities are all proportional to 
exp i { z /e } ,  with e-l a non-dimensional wavenumber, while z is the axial variable scaled 
on d .  The appropriate linear-stability equations are well known (see e.g. Dean 1928; 
Chandrasekhar 1958; Stuart 1963) and can be written in the form 

For convenience we restrict our attention to the case when d / R  

[e2-&- 11’ u = e2TVv, 

[E2v-1] d2 v = “2UdY, d B  

d u  
e-+iw = 0, 

dY 

(2 . la )  

(2.1 b )  

(2.1 c )  

together with the boundary conditions 

, y = 0 , l .  (2.2) u=v=w=o 

Here u, v and w are suitably dimensionless velocities in the radial, azimuthal and 
axial directions, while the radial variable y is scaled on d such that the inner and outer 
cylinders correspond to y = 0 and y = 1 respectively. We are concerned only with 
neutrally stable perturbations, so that there is no growth rate appearing in (2.1). The 
parameter T is the Taylor number defined by 

where V, is the speed of the inner cylinder in the Taylor problem and the mean basic 
circumferential fluid velocity in the Dean problem. The function v(y) appearing in 
(2.1) is the basic circumferential velocity field, and is given by 

in the Taylor problem and 
T= R(y) = 1-3 

T = V , ( y )  = 6y( 1 - y) 
in the Dean problem. 

The eigenrelation e = e(T) specified by (2.1) and (2.2) can be solved numerically 
to  determine the neutral curve in the (e,T)-plane. In  figure 1 we have shown the 
neutral curve for Dean’s problem, and we see that for T > T,, = 2581 there is a finite 
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FIGURE 1 .  A comparison between the neutral curve for the Dean problem and its asymptotic 
approximation at high wavenumbers. 
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bandwidth of unstable disturbances. I n  fact it is believed that there exists an infinite 
sequence of neutral curves, the nth neutral curve having a minimum value of T = T,, 
greater than Tcl, and the neutral curves are ordered such that T,, > T,, > Tc3. . . . 
The eigenrelation for the Taylor problem has similar properties, but clearly the values 
of Tcl, T,, etc. in this case are different. 

Our concern here is with the asymptotic structure of the right-hand branches of 
these neutral curves and the corresponding eigenfunctions. This structure will be used 
in $3, where we shall then be able to  determine the effect of boundary-layer growth 
on Gortler vortices. The right-hand branches of the neutral curves correspond to small 
values of e, so, following Meksyn (1946), we consider the limit .e -+ 0, in which case 
it is natural to seek a WKB solution of (2.1) with 

where 

(2 .6a)  

(2.66) 

( 2 . 6 ~ )  

Here yo is some constant in the interval [0,1] while K(0) ,  uo, u1 etc. are to be 
determined. For small values of e the dominant terms on the right-and left-hand sides 
of (2.1 6) balance if T - e-4 and U/  V - O(e-'), We therefore expand T in the form 

a, 

(2.6d) 
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then K(8)  is determined by equating terms of order cz in (2.1),  after first substituting 
the above expansions into (2.1). We obtain the equation 

{ K ~ +  1j3 = -A,  W', (2.7) 

which gives six possible values for K.  However an examination of the structure of 
the eigenfunctions corresponding to the six roots of (2.7) shows that only real values 
of K lead to acceptable solutions of the stability equations. Such a result can also 
be inferred from the results of Meksyn (1946). 

The condition that (2.7) should have some real roots imposes a condition on the 
velocity field v(y) and a further condition on A,. We can see directly from (2.7) that 
real values of K can only occur in regions where rp is negative and 

A, > -{  VP};in (2.8) 

where { Fp}min denotes the minimum value of Fv". I n  the Taylor problem vv" is 
negative, except a t  y = 1 where v i s  zero, while in the Dean problem vv" is negative 
only in (4,l). Moreover, in the former problem real values of K exist only in the 
interval [0, y,*] for any A, satisfying the above inequality and where yo* = 1 - A i l .  In  
the Dean problem the corresponding interval is [y:, y.3, where y:, y; are roots of the 

(2.9) 
equation 

in the interval (+, 1) .  Thus a difference in the structure of the WKB solutions for the 
two problems is already apparent and could have been anticipated on the basis of 
Rayleigh's criterion for inviscid flows. We shall return to this point later. 

The WKB solutions fail when the real roots of (2.7) coalesce, so turning points will 
exist near yo*, y: and yz. These turning points are of the first order and the structure 
of the disturbances in d neighbourhoods of each turning point can be found in the 
usual way in terms of Airy functions. All the eigenvalues resulting from the WKB 
solutions necessarily have A, > - {  vp};$n and it is found that an infinite number 
of eigenvalues A, exists in each problem. We note that if A, = -{  vp}&, the turning 
point in the Taylor problem has moved to y = 0, while in the Dean problem 
y: = y; = +{1+ di}. I n  both cases the WKB method breaks down, since there is now 
no finite interval where (2.7) has real solutions. We shall see below that when 
A, = - { vp};\n solutions of the original disturbance equations can still be constructed 
and are the most dangerous modes available. 

We note, however, that in the Dean problem when yf = y; the appropriate 
transition interval corresponds to a second-order turning point and so the interval 
is of thickness €4. Thus in this interval the velocity field will be expressed in terms 
of parabolic-cylinder functions, while in the Taylor case the turning point at y = 0 
remains of the first order so that Airy-function solutions occur. Thus the structures 
of the most dangerous modes in the two problems are quite distinct and result from 
the manner in which Rayleigh's criterion is violated in each problem. 

We recall that for a circumferential velocity field (0, V(r ) ,  0) the flow is inviscidly 
unstable if V 2 / r  increases towards the centre of curvature of the streamlines. I n  the 
present small-gap case i t  follows that locally the velocity field v(y) violates Rayleigh's 
criterion the most where 1 vvl has its greatest value. In  the Taylor problem this occurs 
at y = 0, while in the Dean problem it occurs at the interior point where 
y: = yz = t(l + dk). Thus we expect that short-wavelength Taylor vortices will be 
localized near y = 0 in the Taylor problem and near y = +( 1 + 44) in the Dean 
problem. It remains now for us to work out the details for each of these problems 
for the case A, = -{ rp}min; the WKB solutions will be omitted for the sake of 
brevity but are available on request from the author. 

36y(l -y) (1  -2y) = -hi1 
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We first consider the Taylor problem, in which case it is convenient to  eliminate 
u from (2.1) and (2 .2 )  to  give 

[..& q3 = - € 4 ~ ( 1  -y)v,  

d2v d d2 '=@=dyI 2--1 dy2 ] v = o ,  y =  0,1.  

(2.10a) 

(2.10 b)  

We now expand the Taylor number in the form 

T = C ~ { ~ + Y ~ ~ +  ...}, 

,+L 

v = vo(&) + eB,(()  + . . . 
3&4. and define the variable c by 

We then write (2.11) 

and substitute this expression into ( 2 . 1 0 ~ ) .  If we then equate terms of order f after 
replacing y by @34 we obtain 

The solution of this equation that is bounded as 6 + 00 is 

v, = C Ai (6-7, 3-4), (2.12) 

where C is an arbitrary constant. This solution does not satisfy the required boundary 
conditions at y = 0. Thus i t  is necessary to  look for another boundary layer embedded 
inside the ei layer. The appropriate layer is of thickness e, so we define the variable 

Y = y"1, 

and in this layer we expand v in the form 

v = €~V,(Y)+%V,(Y)+. . .. 

We now substitute this expression into (2.10) and equate terms of order ei to give 

( 2 . 1 3 ~ )  

(2 .13b)  

The solution of (2.13) that does not grow exponentially with Y is 

V, = a, + a, Y + exp - (34 cos ~ z . )  Y ]  {a2 sin (33 sin hz.1 Y + a3 cos (3b sin hz.) r>. 
We can choose a,, a2 and u3 in terms of a, such that the required conditions a t  Y = 0 
are satisfied. For large values of Y we see that V, - Y ,  so that matching with (2.11) 

(2.14) 
can only be achieved if 

Ai ( -yl 3-i) = 0, 

which gives an infinite sequence of eigenvalues {yl,} corresponding to  the zeros of 
the Airy function on the negative real axis. The most dangerous mode of instability 

(2.15) 
has T given by T = e-4{l+3.372ei+ . . .}. 
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For large values of m the eigenvalues can be approximated by 

S(b1 , ) f  - n{m-$>, (2.16a) 

and the Taylor-number expansion then takes the form 

T = ~ - ~ { l + ~ [ ( $ % n ( m - : ) ] f +  . . .}. (2.16b) 

For such modes the disturbance is strongest for [ - ms, so the higher modes become 
concentrated progressively further away from the inner cylinder. I n  between the wall 
and the region [ - rnt the disturbance is almost periodic and decaying slowly in 
amplitude towards the wall. In  fact, when m - e- l  the analysis breaks down and the 
WKB expansion must be used. 

We now return to the Dean problem and find the asymptotic form for the most 
dangerous linear disturbances. We recall that  the WKB formulation for this problem 
fails when y is equal to either of the roots of (2.9) lying in &1) .  These roots coalesce 
at y = $1 + 4;} when A, + 1 + ( 2 4 3 ) - l ,  and in the neighbourhood of this point the 
disturbance velocity field is expressed in terms of parabolic-cylinder functions. We 

(2.17) 
first write 

T = ~ - ~ { , u ~ + p ~ d + .  . .>, 

and define the variable 7 by 
7 = E-i{y-+[l +4f]}. (2.18) 

We now replace Tin (2.1 a ,  b )  by 6y( 1 - y )  and then write the two differential equations 
in terms of the variable 7. The functions u and v are then written as 

u = { U o ( 7 )  + €h1(7)  + . . .}, (2.19 a )  

v = € 2 { V 0 ( V )  + €h,(?j) + . . .}, (2.19 b )  

where we have anticipated that u / v  - O ( C ~ )  in this region. At order eo we find that 
uo and vo must satisfy the equations 

Uo = Po vo, vo 2 4 3  Uo,  

and so for a consistent solution of these equations we must choose ,uo = (22/3)-l .  At 
order d we obtain 

u1= PO 01 +PI vo - 2 4 3  7 ~ 0 ~ 0 ,  

v1 = 22/3u1+ 127u0, 

and for a consistent solution of this system we must choose ,ul = 0. At order E we 
find 

These equations can be simplified by replacing uo by pov0 and u1 by 
{p0 v1 - 2 4 3  7,uo vo}. The resulting linear equations for u2 and v 2  have a consistent 
solution if d2vo 2 

dV2 4 3  
- + - , u ~ v ~ - ~ ~ ~ v ~  = 0 ,  (2.20) 

which is the parabolic-cylinder equation. This equation has a set of solutions that 
decay as 171 +a3 if ,u2 is given, 

,uz=pzn=2+3[! j+n]  ( % = 0 , 1 , 2  , . . .  ), (2.21) 
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and then V, is given by 
V, = V,, = H e , ( ( 2 4 ) f ~ )  

where He, is a Hermite polynomial. It follows from (2.17), (2.21) that the most 
dangerous linear mode has a Taylor-number expansion 

€-4  

2 4 3  
T=- {1+32 /6e+ .  . .}, (2.22) 

for small values of 6 .  For large values of n the disturbance velocity field spreads out 
and becomes strongest near 7 = f na and is almost periodic between these points. If 
n is taken to be of order e-l the present formulation breaks down and the WKB 
method must be used. 

The asymptotic structure derived above for the Dean problem will in $3  form the 
basis for an asymptotic description of short-wavelength disturbances in boundary 
layers. Thus, following the suggestion of an anonymous referee, we have in figure 1 
shown the two-term asymptotic approximation to the neutral curve. There seems 
little doubt that  our asymptotics adequately describe the most dangerous form of 
instability a t  small wavelengths. We cannot, however, use this curve to assess the 
range of validity for a similar asymptotic description of the Gortler problem. Indeed 
it is not clear that  a unique neutral curve for all wavenumbers should even exist in 
the Gortler problem, since the neutral curves given by previous investigators result 
from approximations that cannot be justified. The results shown in figure 1 would 
suggest that, if a unique neutral curve does exist for the Giirtler problem, then a t  
O( 1 )  wavenumbers the asymptotics would probably only give qualitative information 
about the instability. The referee also made available to the author the results of a 
numerical investigation of the Taylor problem a t  large wavenumbers. The numerical 
results supplied suggest that  lim Te4 z 1.04, thus giving a check on (2.15). 

Finally we close this section with a brief discussion of how the expansions (2.15) 
and (2.22) compare with the corresponding expansions of the Rayleigh number R in 
terms of the wavenumber a for the related BBnard convection problem. I n  the latter 
problem the differential equation to be solved is simply ( 2 . 1 0 ~ )  with 1 -y replaced 
by 1, which gives a differential equation with constant coefficients. Thus the basic 
flow is equally unstable everywhere in (0 , l )  and so the disturbances for large a are 
not concentrated in boundary layers. If free-surface conditions are applied at y = 0 ,1  
then the eigenrelation of the most dangerous mode can be written in the form 

E + O  

(2.23) 

which is exact and does not have the same form as (2.15) or (2.22). If rigid boundary 
conditions are used then the velocity field has boundary layers of thickness a-1 at 
y = 0,1. I n  between these layers the disturbance is periodic and the expansion of the 
Rayleigh number takes the form 

R = ayo(a) + 0(a3), (2.24) 

wheref,(a) is of order a0 and satisfies a transcendental equation. Thus, as pointed 
out to the author by the referee, a unifying feature of the BBnard, Taylor and Dean 
problems (also, as we shall see in $3, the Gortler problem) is that  a t  high wavenumbers 
the stability parameter in the neutral case is proportional to the fourth power of the 
wavenumber. The higher-order dependence on the wavenumber varies between the 
problems, as does the zeroth-order structure of the disturbance. 
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3. Gortler vortices in a growing boundary layer 
We consider a fluid flow over a section of a concave wall having constant radius 

of curvature R. If we now take 1 to be a typical length measured along the curved 
wall, then we define 6 = lR-’, 

and we assume that 8 4  1 .  

We choose dimensionless variables s and { such that 

(3.1) 

s = B‘S-’, 
5 = -{r’-R}Z-l, 

where (r‘ ,  8,z‘)  are cylindrical polar coordinates with r’ = 0 corresponding to the axis 
of the cylindrical surface. We now suppose that a high-Reynolds-number flow is set 
up over this surface. For definiteness we assume that a second cylindrical surface is 
present at r = R-1 and that a t  0 = 0 a flow with constant velocity V,* in the 
azimuthal direction enters the channel. If the Reynolds number Re, defined by 

is large, then boundary layers scaled on Red will be set up a t  each wall, together with 
an inviscid core flow. We focus our attention only on the boundary layer on the outer 
wall, and define a variable y by 

y = Reic; 

then for Re % 1 and S 4 1 the basic flow in this boundary layer has velocities u and 
v in the y-  and s-directions given by 

2, 
~ = VB = V,(()  + O ( R e d , S ) ,  

~ = Red uB = Red{ %((, s )  + O(Re-i,S)}, 

(3 .2a)  v,* 

v,* (3.26) 
U 

where 5 = y(2s)-i, and go, satisfy 

v, = PCt), QO = { f (O -Y(C)I ( W i .  

f”’+f = 0, 

Here f([) satisfies the usual ordinary differential system 

f (0)  = f ( O )  = 0, P ( m )  = 1. 

The inviscid core and the other boundary layer play no role in the analysis that we 
give here and so we do not describe them further. However, i t  follows that the analysis 
which we give applies directly to any flow over a concave surface that leads to a 
velocity field of the form (3.2). 

We now perturb the flow in the boundary layer near 5 = 0 such that the disturbed 
flow is 

(3.3a) 
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where z is a dimensionless axial variable scaled on the boundary-layer thickness such 

that z = z’l-’Rd, 
and t is a non-dimensional time variable scaled on lV,*-l. Suppose next that  the 
Navier-Stokes equations written in cylindrical polar coordinates are rewritten in 
terms of the dimensionless variables y, s and z ,  and u, v, w are replaced by (3.3). If 
we equate terms of order y in the resulting equations we obtain 

(3.4a) 

(3.4c) 

-uy+ w, = -[V,]+O(S),  ( 3 . 4 d )  

where P, the pressure perturbation corresponding to ( U ,  B, W), is scaled on Rep1. 
The parameter G is the Gortler number given by 

G = 2ReiS, (3 .5)  

which is first held fixed while Red -+ 0 and S -+ 0. We shall shortly consider the second 
limit G -+ co. The range of validity of our expansions will be discussed later. The terms 
in the square brackets above represent the effect of boundary-layer growth and we 
see that the presence of the terms involving s-derivatives of L’,, U etc. causes the 
linear-stability problem for a disturbance periodic in z to be a partial differential 
system in the three variables t, y and s. Thus there is no mathematical justification 
for ignoring these terms or, alternatively, as is often the case, ignoring only those 
involving s-derivatives of U ,  V and W. 

However, we now show that by taking the further limit G 4 c o  we can obtain a 
formal asymptotic expansion to  this system. The essential idea is that when G -+ co 
the terms in the square brackets only enter the hierarchy of resulting differential 
systems a t  higher order. This enables us to solve these systems by Fourier expanding 
in 2, so that only ordinary differential systems are encountered. We stress that such 
a procedure can only be carried out if the terms of order Re-:,& in (3.4) remain 
negligible compared with those which are retained. This is in fact the case and we 
return to this point later. 

Suppose next that  U ,  V ,  W and P are all taken to  be proportional to eizlt, where 
e-l, the non-dimensional wavenumber of the disturbance, is large. I n  the absence of 
the terms on the right-hand sides of (3.4) these equations are similar to  those 
appropriate to fully developed flows in curved channels. Our experience in $2 shows 
that the required asymptotic expansions depend crucially on the position where V, V,, 
has its maximum value. For the Blasius boundary layer this quantity has a maximum 
at 6 = g+ = 1.53, 

so we must base our expansions on those used in $2 for the Dean problem. Thus we 
focus our attention on the region of thickness centred on 6 = <+ in which 
O( U )  = O ( C - ~  V ) .  It follows from the equation of continuity that O( W) = O(e+iU) and 
from the z-momentum equation that O ( Y )  = O(e-:U). We now define the variable 7 

_ _  

(3.6) 

by 7 = .-:{g-g+}, (3 .7a)  
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SO that in (3.4) we must replace a/ay by (2ss)-*a/dq and a l a s  by 

485 

In view of the fact that the boundary layer is growing with s, there is some ambiguity 
about how we should define neutral stability (for a discussion of this point in 
connection with the Tollmien-Schlichting mode of instability for the Blasius boundary 
layer see, e.g. Gaster 1974; Smith 1979). Since the disturbance has a lengthscale O(E)  
in the x-direction we can expect that the spatial growth rate of a Gortler vortex is 
on a lengthscale such that a2/ax2 - alas - 1/e2 in (3.4). Thus we assume that U ,  V, 
W ,  P are all proportional to E, where 

E = e x p { ~ + ~ S B I P o ( Q ) + € ~ P ~ ( Q ) +  . . .  I d $ ] ,  (3.76) 

and the growth rate (Po+e?$3,+ . . . )  is to be evaluated. We may assume that in the 
initial stages of the instability Po, P1 etc. are all real and U ,  V ,  W and P are 
independent of time. The ambiguity in the condition for neutral stability arises 
because U ,  V ,  W and P have different dependences on the slow variable s. Thus if 
we expand U ,  V, W and P in the form 

u = {uo(q ,s )+€~u, (q , s )+.  . .}E+C.C., (3 .8a)  

v = { € 2 & ( q , s ) + € ~ ~ ( q , s ) + .  . . } E + C . C . ,  (3 .8b )  

w = {€~wo(q,s)+€Wl(q,s)+. . .}E+C.C., ( 3 . 8 ~ )  

P =  (€-~p,(q,s)+P,(r ,s)+.  ..}E+C.C., ( 3 . 8 d )  

replace G by the expansion 

G = E - ~ { ~ ~ + & J ~ + E ~ ~ + .  . .>, (3.9) 
and take V evaluated a t  q = q*, z = z* to be a representative disturbance quantity, 
then the relative change of V with respect to s is 

Thus for neutral stability we must choose the first four Pj such that 

P o  = p1 = P 2  = 0, P 3  = a __ VO (r*, 8 )  5+/2sV,(?l*, s), (3.10) 

and the last condition clearly depends on r* and would, of course, be different if we, 
say, choose W to be the representative disturbance quantity. However, since our 
principal aim is to discuss the neutral case we will set Po = P1 = /Iz = 0 in the 
following analyses. This considerably reduces the amount of algebra to be carried out. 
The coefficients go, .  . . appearing in (3.9) are functions of s to be determined such that 
the flow is locally neutral a t  the location s. Alternatively we could take g o ,  g1 etc. 
to be given and then find s = S ( E ,  G) such that the flow is neutral at this location. 

all 

We now expand and go in the neighbourhood of E+ by writing 

6 = V , + , + € ~ q V ~ l + € q " ; 2 + .  . . )  

uo = {2s}-~{u~o+s:u,:~+€~~u;~+. . .}, 

(3.11a) 

(3 .11b)  

where ( 3 . 1 1 ~ )  
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We now substitute the expansion8 (3.8), (3.9), (3.10) into (3.4) and equate like powers 
of d after replacing a/ay by ( 2 s ~ )  -$ a / a y  and 8/88 by 

a - [(+ +or] a 
as ~ ~ € 4  a7' 
- - 

If we restrict our attention to the first four terms in the expansion of (3.4) we obtain 

AUo = 0, 

I 
AU3 = 

where Uj = ( Uj,  I$, W j ,  P,)', and the matrix A is defined by 

r 1 -goVio 0 0 1  

(3.12a) 

(3.12b) 

( 3 . 1 2 ~ )  

(3.12d) 

(3.13) 

It remains now for us to solve (3.12u-d) successively in order to  determine the 
coefficients in the expansion of the Gortler number. I n  each of these systems, the first 
and second components of the equation are solved for U j  and 5,  and then the third 
and fourth components determine the corresponding functions 4 and Wj. 

The first and second components of ( 3 . 1 2 ~ )  give two homogeneous equations for 
Uo and V, that are consistent if 

go = ~ (3.14) 
(244 

Vin V i i  ' 



Taylor-Qortler vortices 487 

which thus determines the first term in the expansion of the Gortler number. The 
functions U,, Po, Wo can then be written in the form 

(3.15) 

where V, is to  be determined a t  higher order. We now consider the solution of (3.12b), 
which can be evaluated by first of all eliminating U,  from the first two component 
of this equation to give 

(3.16) 

We now use the fact that %([) Ti([) has a maximum at  E = [+, which means that 
the coefficient of 7 V, in the above equation is zero, so that a consistent solution of 
the first two components of (3.12b) exists only if 

g, = 0. 

The solution of (3.12b) can then be written in the form 

(3.17) 

(3.18a) 

(3.18 b) 

(3.18~) 

where V, is to be determined a t  higher order. 

inhomogeneous equations for U, and V, have a consistent solution only if 
If we now consider the first two components of (3.12~) we find that these two 

v,++g,v;0V;1~2sv, = 0. (3.19) 

If we now define the variable 0 by 

and set 

then we see that V, satisfies the parabolic-cylinder equation 

(3.20) 

(3.21) 

(3 .22)  

and if we impose the condition that the disturbance is confined to the ei layer we must 
choose a = -+-m, where m is a non-negative integer. This condition determines the 
infinite sequence of eigenvalues 

(3.23) 



488 P. Hall 

The most dangerous mode (corresponding to the minimum value of 9,) is clearly g20. 
The eigenfunction corresponding to the eigenvalue g,, is given by 

V, = V,,(8) = e- f@ He,(@, (3.24) 

where He, is a Hermite polynomial. The solution of ( 3 . 1 2 ~ )  can then be written in 
the form 

- i UZlr 
(244 ' 

w, = (3.25b) 

i 
2s pz = iw2-- WOrnVJ. (3.25 c) 

We now consider the solution of (3.12d), which we determine by eliminating U3 and 
V, between the first two components of this equation to give 

= { $ p 3  8 V&- V &  V ~ I  9 3  Q(28)'> V,, X(7,  8)' (3.26) 

which, apart from the inhomogeneous terms on the right-hand side, is identical with 
(3.9). The function S is odd in 8 if V,, is even, and vice versa. In  this case (3.26) 
can only have a solution if 2(2s)4 

93 = - P 3 ,  
Vil  

so that if we are interested in the neutral case then it follows from (3.10) that 

where 

(3.27) 

(3.28) 

The procedure described above can in principle be continued to any order in 8 ,  but 
we shall not do so here. We note that (3.27) gives the first non-parallel flow effect 
on the position where the Gortler vortex is neutrally stable. We further note that 
the above analysis can be done without first setting Po = p1 = p, = 0. In such a case 
we would take the coefficients go, g1 etc. to be given, and instead of obtaining 
eigenrelations of the form (3.23) we would obtain equations determining Po, p1 etc. 
in terms of go, g1 etc. The expansion up to order €3 in G that we have just derived 
is valid for < Re < 6-y. The upper limit of this range increases if fewer terms 
in the expression of G are retained. 

4. Discussion of results 
Suppose that the quantities Via, V &  etc. that appear in (3.14), (3.23) and (3.27) 

are replaced by their numerical values obtained by integrating the nonlinear equation 
for f ( [ ) .  We find that the mth linear mode with wavenumber 6 - l  is neutral a t  the 
location s if the Gortler number G is given by 



Taylor-Gortler vortices 489 

First mode 

Second mode 
0.4 

0.2 - 
-8 -7 -6 

- 
-7 -6 

FIGURE 2. The first three disturbance eigenfunctions for the Gortler problem. 

and the most dangerous disturbance clearly corresponds to m = 0. In  figure 2 we have 
shown the first three eigenfunctions KO(@, & ( O )  and Vo,(0), and we see that the 
number of vortices associated with each mode increases with m. In  fact the 
asymptotic analysis given in $3  becomes invalid when m = O ( E - ~ ) ,  and the WKB 
method must be used to describe such modes. These modes have critical layers of 
thickness €3 located O( 1 )  distances either side of c = [+. The solutions in these layers 
are in terms of the Airy function Ai and in between the layers there is a third region 
where the solution is almost periodic, but smaller in magnitude by O(s4). Above the 
upper critical layer and below the lower critical layer the disturbance is exponentially 
small, so that the disturbance is again trapped in the interior of the fluid. 

We shall now concentrate on the most dangerous linear mode and introduce a local 
Gortler number G, defined by 

If we then define the local wavenumber EL' by 

(4.3) 
-1 

E ,  = €8 2 )  
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then we see that (4.1) with m = 0 can be written in the form 

Here we have used the fact that  V'  /KO = -$6*. We see that the non-parallel-flow 
effect, manifested through the O(e%) term, can either increase or decrease GP) ,  
depending on the sign of 8". If measurements are made below the critical level 8" = 0, 
then the correction term is positive and G$O) is greater than the value given by the 
parallel-flow approximation, which retains only the first two terms in (4.4). We note 
that, if a flow quantity other than the normal velocity component were used, then 
a slightly different form €or the O(&) term in (4.4) would be found. However the 
z-velocity component and the pressure have zeros a t  8" = 0, so that the relative 
change of these quantities would become infinite there, and so we do not consider 
stability criteria based on these quantities. The downstream velocity component leads 
to a value of Gi0) identical to  (4.4) if it  is taken as a representative flow quantity. 

We notice in (4.4) that the order e! term becomes increasingly important for large 
values of 8*, so that  a t  the edge of the critical layer, where 8" - e;i, the second and 
third terms are comparable. However, if measurements are made a t  thc centre of the 
critical layer the O(e!) term is zero, and the first non-parallel flow effect appears a t  
order ei. Thus, depending on where in the flow field the local stability criterion is used, 
the non-parallel-flow effect in (4.4) can vary by O(e,). It would seem sensible to 
perform experiments with 8" = 0 so that non-parallel-flow effects are in some sense 
minimized. 

The above discussion explains why i t  is not easy to interpret the available 
experimental results, which are due to Tani & Sakagami (1962) and Bippes & Gortler 
(1972). It is not clear from either of these papers what were the appropriate stability 
criteria used by the respective authors. However, Bippes & Gortler measured the three 
components of the disturbance velocity field, so we can a t  least see if our disturbancw 
have the correct shape. I n  figure 3 we have compared our results with those of Bippes 
& Gortler for G, = 157.3 and l s /R  = 0.475. The value of E ,  corresponding to this value 
of Gs can be evaluated approximately by retaining only the first term in (4.4), to give 
e, = 0-66. The theoretical and experimental results have both been normalized to give 
a downstream velocity component with maximum value 1. The agreement between 
the results seems reasonable except perhaps for the discrepancy between the 
measured and predicted z-velocity components. This discrepancy is possibly due to 
finite-amplitude effects and/or the size of e;l being too small to allow the first term 
in (3.8) to describe the flow field accurately. Nevertheless, the similarity between the 
observations and our theoretical predictions encourages us to believe that the 
asymptotic solution has some application in regime of physical interest. 

In  figure 4 we have shown the dependence of Gio) on e, for 8" = 0 and 6'* = 1 .  The 
latter value corresponds to the local stability criterion being applied below the critical 
layer. The difference between these curves demonstrates the non-parallel-flow effect 
on the Gortler number. In  figure 5 we have shown the neutral curves predicted by 
(4.4) a t  relatively low values of e;l. The three theoretical curves shown correspond 
to taking f?* = 0, - 2, and - 4 in (4.4). The experimental results of Bippes & Gortler 
and Tani & Sakagami lie in the shaded region of this figure. We see that the neutral 
curves corresponding to 8* decreasing move closer to the experimental results. I n  the 
absence of any knowledge of the stability criterion used by the above authors, the 
significance of this result is not clear. 

I n  figure 5 we have also shown the theoretical results of Gortler (1940) and Smith 

O S  



Taylor-Gortler vortices 

Radial velocity perturbation 

49 1 

0.1 - 

Azimuthal velocity perturbation 

t 

Axial velocity perturbation 
I \  

0.5 

ys-4 
l ' O d  '. 

2.4 

2.0 

1.6 

In (+c$ 
I .2 

0.8 

0.4 

/ 

J I I , -  
-0.2 0 0.2 0.4 0.6 0.8 I 

-log,,f, 

FIGURE 4. The parallel and non-parallel neutral curves. 
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FIGURE 5 .  A comparison with previous theoretical and experimental work 

( 1955). The latter aut,hors were concerned with external-flow boundary layers, but 
the lowest order terms in this case are identical with those given in (3.4). Gortler was 
interested primarily in the regions G - 0(1) and solved the stability problem 
obtained by ignoring all the terms on the right-hand sides of (3.4). Smith (1955) solved 
similar equations but included some of the terms on the right-hand sides of (3.4). 
Neither set of equations corresponds to a rational approximation to (3.4) if G - O(1) .  
The equations solved by Gortler were later solved more accurately by Hammerlin 
(1955), and in a subsequent paper Hammerlin (1956) solved the equations obtained 
by retaining some of the higher-order curvature terms in (3.4). Clearly none of these 
procedures can be justified, but we note that the neutral curves of Smith and Gortler 
lie close to our curves for sufficiently small values of eS. This is not surprising, since 
in this case the equations solved by Gortler and Smith give the first two terms in 
an expansion of the Gortler number in terms of E ,  identical with the first two terms 
of (4.4). However, neither approximate set of equations leads to a term similar to 
the order E! term in (4.4). It would therefore seem that the present asymptotic 
formulation of the problem provides the first rational framework for investigating 
the effect of boundary-layer growth on Gortler vortices. The similarity of our 
approach to that used by Smith (1979, 1980) to investigate Tollmien-Schlichting 
waves in growing boundary layers is worth noticing. We further mention that several 
authors apart from those discussed above have solved various reduced forms of (3.4) 
with the aim of obtaining a neutral curve having a critical wavenumber a t  a finite 
value of 8,. Without exception, these reduced equations do not take account of 
boundary-layer growth and therefore cannot be justified. It seems likely that the 
problem of determining what happens to the neutral curve when E ; ~  + 0 can only 
be resolved by a numerical investigation of the partial differential equations (3.4). 

We now turn to  the question of how the vortices develop into finite-amplitude 
motions. Bippes & Gortler (1972) have observed experimentally that further down- 
stream from the location where the vortices are first observed the flow becomes 
time-dependent. Moreover, the vortices then become almost periodic in nature and 
are very similar in appearance to wavy-vortex flows observed between concentric 
cylinders. The ‘waviness’ of the vortices appears to increase with s, and ultimately 
the flow becomes turbulent. We expect that  the nonlinear stage during which the 
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wavy vortices appear must be described using a weakly nonlinear theory of the type 
used so successfully for the Taylor problem by Davey, DiPrima & Stuart (1968). We 
do not pursue such a calculation here, but at least make a first step towards 
understanding the wavy-vortex regime by determining whether the disturbances 
investigated in $ 3 can be modified such that the Gortler-vortex structure propagates 
downstream with some speed. It seems that such three-dimensional modes have not 
been considered previously, and there is no obvious reason why they should be more 
stable than the modes considered in $3. However, on the basis of the experimental 
results of Bippes & Gortler (1972) and the experience of previous investigators of the 
Taylor problem we expect that this is not the case. 

The first step in investigating such modes is to decide on appropriate scales for the 
s- and t-dependence to be introduced into (3.7 b ) .  If the s- and t-dependences are to 
balance in some sense, then from (3.4) we require that d/3t - 3/85. After some trial 
and error we find that the most rapid variation with s that can be incorporated into 
the expansion procedure of $3  is such that 3/88 - e-2. We therefore define a new 
variable S by 

and the appropriate time variable T is defined by 

s = €-b, 

T = E - f t .  

We now look for perturbations to the basic flow of the form (3.8) but with ~ Z / E  in 
(3.7b) replaced by i{z/e+kS-nT). We again assume for simplicity that 
Po = PI = PZ = 0, and find the Gortler number G a t  which a disturbance with fixed 
transverse and downstream wavenumbers e-l and ke-1 and fixed frequency fie-: is 
neutrally stable. The expansion (3.8) is retained, and the procedure of $ 3  is repeated. 
At first order we find that go is again given by (3.14), while a t  order d we find that 
g, = 0 and that the constants k and R must satisfy the equation 

v;ok = R, 

so that the three-dimensional modes propagate downstream with the speed of the 
fluid of the basic state in the critical layer. Thus for the Blasius boundary layer the 
wave propagates downstream with a speed equal to 0.67 times that of the free-stream 
speed. At order ewe find that V,, the first-order velocity component in the s-direction, 
satisfies the equation 

and this equation must again be solved subject to the condition V, + 0, 171 +a. If 
we now define the variable 7' by 

then we find that V, satisfies (3.19) but with 7 replaced by 7' and g2 by 

-+- . 

Thus the disturbance with transverse wavenumber e-l, downstream wavenumber 
k6-t and frequency Re-t is neutrally stable at the location s if 

G =  GLm) = ~ { s ~ + s [ 0 ~ 9 6 ( 1 + 2 m ) + 0 ~ 2 1 s ~ k 2 ] + 0 ( ~ ~ ) } ,  €4 
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so that the travelling-wave disturbances are more stable than the stationary 
disturbances considered in 93. 

Finally we note that the discussion in $3  is easily modified to allow for the concave 
surface having curvature K(s)  dependent on s. The only essential difference in this 
case is that  the coefficient of G in (3.4) is then multiplied by K(s) .  The subsequent 
analysis is unchanged except that  G is then replaced by GK-l(s). 

The author acknowledges the useful comments on a first draft of this paper made 
by J. T. Stuart. The author is also grateful to the referee who supplied the numerical 
results described in 92 and for his other constructive comments in connection with 
92. 
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